Preliminary Astrometric Results from Kepler

David G. Monet

U. S. Naval Observatory, Flagstaff, AZ 86001

William J. Borucki, Stephen T. Bryson NASA/Ames Research Center, Moffett Field, CA 94035

Edward Dunham

Lowell Observatory, Flagstaff, AZ 86001

Ronald L. Gilliland

Space Telescope Science Institute, Baltimore, MD 21218

David G. Koch

NASA/Ames Research Center, Moffett Field, CA 94035

and

Jon M. Jenkins

SETI Institute, Mountain View, CA 94043

Received	; accepted

Pending KSC approval

-2-

ABSTRACT

Although not designed as an astrometric instrument, Kepler is now expected

to produce astrometric results of a quality appropriate to support many of the

astrophysical investigations enabled by its photometric results. On the basis of

data collected during the first few months of operations the astrometric precision

for a single 30 minute measure appears to be at least as good as 4 milliarcseconds

(0.001 pixel) and possibly significantly better. Solutions for stellar parallax and

proper motions must await more observations. Fortunately, the analysis of the

astrometric residuals from a local solution in the vicinity of a star is already an

important tool in the process of confirming the hypothesis of a planetary transit.

Subject headings: astrometry — stars: fundamental parameters